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Abstract

Two-dimensional electroelastic analyses have been performed theoretically on a transversely isotropic piezoelectric
material containing an elliptic hole, subjected to a uniform stress field and a uniform electric displacement field at infin-
ity while the surface of the hole is free of traction and electrically open. Solutions are obtained by using the exact electric
boundary condition based on the complex variation method. Explicit solutions for the distributions of the mechanical
and electrical components on the rim of the elliptic hole are obtained. An interesting relationship between the stress
concentration factor of an elliptic hole (K;) and that of a circular hole (K|,—1), K, = 1 + %, is found in both elastic
and piezoelectric materials. It is shown that the electromechanical coupling effect is helpful to reduce the stress concen-
tration. And the influence of the dielectric parameter of the medium inside the hole on the stresses and the concerned
stress concentration factor at the surface of the hole is weak in a wide range of the dielectric parameter. Comparisons
with available results show good coincidence.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the potential applications of piezoelectric materials have drawn a lot of attentions in
many fields for their electromechanic-coupling effect. The main disadvantage, however, is their brittleness.
Piezoelectric materials have a tendency to develop critical crack growth due to stress concentrations in-
duced by both mechanical and electrical loads. Yet, defects are not limited to cracks. Voids, inclusions, del-
aminations and porosities may also exist and contribute to failures of the materials.
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Due to the simplicity and importance, crack problems have received considerable interests for more than
two decades. In 1980, Deeg analyzed dislocation, crack and inclusion problems in piezoelectric solids. To
simplify the mathematical evaluation, Deeg proposed that the normal components of the electric displace-
ment could be treated as zero at the upper and lower crack surfaces. In order to prove the validity of Deeg’s
approximation, Pak (1990) gave a detailed argument for neglecting the electric displacement within the
crack. Sosa and Pak (1990) investigated a more general crack tip field using an eigenfunction analysis.
Pak (1992); Sosa (1992) and Suo et al. (1992) analyzed the stress and electric fields near a crack. Researches
on crack problems in piezoelectricity have also been conducted by Hao and Shen (1994), Zhang and Tong
(1996), and Wang and Shen (2002).

The problem of a piezoelectric material containing an elliptic hole or inclusion is another important issue
for its importance in both theory and applications. Sosa (1991) solved the plane strain problem for a trans-
versely isotropic piezoelectric material containing an elliptic hole with impermeable electric boundary con-
dition by using the theory of complex variables. Later, Sosa and Khutoryansky (1996) used the series
expansion method to address the same problem but with permeable electric boundary conditions. Their re-
sults showed that the electric displacement inside the hole is constant when uniform mechanical and electric
loads are applied at infinity. Gao and Fan (1999) gave an explicit, closed-form solution satisfying the exact
electric boundary condition on the hole surface for the same problem. They also analyzed the stress inten-
sity factors when the elliptic hole degenerated into a crack. Ting and Yan (1991) and Chung and Ting
(1996) analyzed the plane problem for an anisotropic piezoelectric plate with either an elliptic hole or an
elliptic rigid inclusion by using the Stroh formalism. Analysis on an elliptical cylinder cavity or a crack in-
side an infinite piezoelectric medium was performed by Zhang et al. (1998) based on the Stroh formalism
and the finite element method. Recently, Deng and Wang (2002); Dai and Guo (2004); Zhou and Wang
(2004) and Wang et al. (2004) found that some numerical data given by Sosa (1991) were wrong although
the theoretical solutions themselves were correct.

To the best knowledge of the authors, however, there are few works that make clear the stress concen-
tration at an elliptic hole. Based on the works of Sosa (1991), Sosa and Khutoryansky (1996), and Gao and
Fan (1999), the stress concentration in a two-dimensional transversely isotropic piezoelectric plate contain-
ing an elliptic hole is completely studied in this paper. Furthermore, distributions of the mechanical and
electrical components on the rim of the hole or along the x-axis are given for two different load conditions.
For the case of the far field uni-axial mechanical loading, the solution of the normalized tangential stress is
obtained. An interesting relationship between the stress concentration factor of a semi-elliptic hole and that
of a circular hole is obtained. Using this expression, the influence of the dielectric parameter of the medium
inside the hole on stress distributions and on stress concentrations is readily observed. It is found that this
influence is very weak in a wide range of the dielectric parameter, but the electromechanical coupling effect
is helpful to reduce the stress concentration. Some curves are given under either the far field mechanical
loads or far field electric displacement loads, respectively.

2. Basic formulations of the problem

In a Cartesian coordinate system (xp,X», X3), the general equations governing the three-dimensional pie-
zoelectricity in the absence of body forces and free charges can be written as

&j = Sipion + &Pk, Ei = —&i0ou + BuDr, (1)
Gijj = 0, Di,i =0, (2)
&y = 3wt uy), Ei=—¢,, (3)

where i, j, k, [ =1, 2, 3; 0y, &, u;, D;, E; are the components of stress, strain, displacement, electric displace-
ment and electric field, respectively; s;; is the compliance tensor of the material measured at zero electric
displacement; gi;; is the piezoelectric tensor, and f; is the dielectric impermeability tensor measured at zero
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stress, ¢ is the electric potential. A comma before a subscript stands for differentiation and repeated indices
imply summation.

Here the Cartesian coordinates x, y, z are the principal axes of the material while the z-axis is oriented in
the poling direction of the piezoelectric ceramic and the x—y plane is isotropic. We consider a transversely
isotropic piezoelectric plate containing an elliptic hole with semi-axes of ¢ and b under far field loadings.
For simplicity, the following expressions are adopted:

Displacement:  u, = u(x,z), wu, =v(x,z), u.=w(x,z);
Electric potential: ¢ = ¢(x,z).

Following Sosa (1991), replace x, z, y with x;, x,, x3 . One has

&11 an ap 0 0 0 011 0 by
€22 ap apn 0 0 0 022 0 by D
25 | =10 0 a3 0 0 ||len]|+] 0 o0 <D1>, (4)
2812 0 0 0 Ayq 0 012 b41 0 :
2813 0 0 0 0 ass g13 0 0
g11
022
E1 0 0 0 b41 0 Cl1 0 D1
= - 023 + ) (5)
E2 b12 b22 0 0 0 0 C2 D2
g12
g13
where
52 S128 52 2
ay =sn ——2, ap=s;3— = 137 an =s33 — 2, 033:S44+&7
S11 S11 S8 S11 Bll
ass =S4, ass =2(si —sn), b =gy — Tﬂ’
11
2
s
by = g3 — B8 by =gs cu=0Pp =P +&8
S11 $11

Let z;, = x| + wixo. Thus, expressions of all physical quantities in the x;—x, plane can be expressed as

follows:
3

(o11,02,012) = 2Re ZW;%, 1, —#k>€02(zk)a

k=1
(013,023) = 2Re(—py, 1>(P£1(Z4)7

(D1, Ds) = 2Re Y (—Jupuy, ) @20,
(E1,Es) = —2Re > (di, dipy) 9} (2e), (6)

k=1

3
¢ =2Re > dipy(z1),
k=1

(u,w) = 2Re Z@ka 1) i (2k),

=1
v = —2Re asspyp,(z4),
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where
a» + bnik

5 . (bia + ba) i + b
=any; + ap + b, =apy+———, A=
Pr 11 M 12 124k, g 121 I k Cllﬂ%+022

Hy = i\/z—z; di = (112 — bar) (7)

in which, p (k=1, 2, 3) can be determined by solving the following equation:

(an + (2a;p + 044)H2 + allﬂ4)(cllﬂ2 +cn)+ (b + b41)H2 + bzz)z =0. (8)

There are three pairs of conjugated plural roots for Eq. (8). And the three roots, whose imaginary parts are
positive, are denoted by ;. (k =1, 2, 3).
At the hole boundary, one has

dUu
—=— | nds=— dx, — o dxy,
™ /lz‘S /1012 2 — 020X

d—UZ/flstZ/Ulldxz—Glzdxl,
N f ©)
(p4=/023dx1—013dx2,

1

/DndS:/DldXQ—Dzdxl,
li li

where U is the Airy stress function, and ¢, and 7,, are the two components of the force on the boundary.

3. Solutions of the problem

Consider the problem of a piezoelectric solid containing an elliptic hole subjected to a uniform stress
field ¢ and a uniform electric displacement field D™ at infinity while the surface of the hole is free of trac-
tion and electrically open. The solution may be separated into two parts: one part is the homogeneous solu-
tion in which the stress and electric displacement are ¢ and D™ everywhere; and the other is the
“disturbed” state due to the presence of the hole. The second part of the solution should satisfy the bound-
ary conditions of vanishing of both stress and electric displacement at infinity. On the surface of the hole,
the stress vanishes after the two parts are superposed. For simplicity, we use the superscript “I”” to denote
the first part solution, “II”’ the second part solution, “co’ the quantities at far fields, and “0” the quantities
at the surfaces of the hole.

3.1. The stress field for the plate without a hole

Consider an infinite piezoelectric plate subjected to a uniform stress field 6™ and a uniform electric dis-
placement field D™ at infinity, the solutions are

I _ o I _ o I _ o I _ o I _ o I oo I oo
Oy =07, Oy =0, O3=03, 0y=0y, 0y=0y; D =D" D,=Dy. (10)

3.2. The stress field for the plate with an elliptic hole

Since the complex potential ¢.(z;) is a holomorphic function, it can be expressed as follows (Sosa, 1991;
Gao and Fan, 1999):
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cpk[zk(gk)} = QDk(Zk) = “klgl:n (k = 1727374)7 (11)
where
s A - (@ + )
= =1,2,3,4). 12
Ck afi,ukb (k ) 535 ) ( )

Because the surface of the hole is free, the following boundary conditions should be met with considering
of the relations (9):

3
2Rez (o) + (— / o1, dx; — oézdxl) =0,
k=1 L

3
ZRCZM{‘I’/]{I(U) + (/ ayy dxy — 0112de> =0,
L

k=1 (13)
3
2Re Y Ay (o) + (—/D{ dx —D;dxl> = _/ngs,
k=1 L L
2Re @}'(a) + (— / alydx, — a5y dxl) =0.
L
Here,
O':eig7 xlzagza, Xzzibaia (14)
Substituting Eqgs. (10) and (11) into Eq. (13) leads to
O(kn:()v (k:172737 n 22)7
3
1 :ZMkaj7 (k: 17273)7 (15)
=1
agy; — 1ba(y
gy = — 20 . KN
in which
1 1 1
M= wm o,
M A 3
_aocy; —iba;
2
acyy — ibay
0=(0)= S (16)
_a(DY — DY) —ib(DY — DY)
2

The air inside the hole is considered as a homogeneous isotropic linearity medium without polarization
and free of electric charge. One has V - E = 0. Note that E = —V¢. Thus, V ¢ = 0, where
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0. 0. 0. * o
= 4+ — k 22 4= 4=
Ve e Tast VT e tas

For plane problems, the following expression is adopted (Sosa, 1991):

0
¢ (x1,x2) = —e1x; — exxs,
where e; and e, are real constants and
o¢° o¢°
E) = ., E) = o e, D) =gFE], D)=gE).
6x1 6x2

1823

(17)

(18)

Here, EY, ES, DY, DY are the electric intensity and electric displacement inside the hole, respectively, and &,

is the dielectric constant of the air inside the hole.

There are two constants, e, e,, to be determined in this problem. On the hole surfaces, the electric po-

tential in the media is equal to that inside the hole, namely,

O+ Pl = ¢
Substituting Egs. (6), (10), (11), (14)—(18) into Eq. (19) and simplifying yield
oh+ he =0,
where

: a(EY — EY) +ib(ES — EY)
Z dkkal 3
k=1

3

_alB)— EY) +ib(E) ~ EY) | Z*: S M0, - a(Dy — DY) —ib(Dy — DY) S diMys.

2

k=1 i=1 k=1

2

Analyzing the characteristic of Eq. (20) yields &, = 0 (Gao and Fan, 1999). Thus,
Renh=0, Imh=0.

After considering Egs. (5) and (18), Eq. (21) can be rewritten in a compact form:
(fll Ji2 ) D\ ( T )
fu S )\ DS T,)’

T, :_dR+§D2fR +§D1f1+§E1 )

where

b a b
Ty =—d, —iDTOfR +§D§Cf1 +§E§c;
3 2 3 2
=Re) > diMuQ, di=Im) % diMuQ;
k=1 i=1 k=1 i=1

3
3
fR:RCdeMk3, fl :Imkli’lldkMB,

k=1

a b a

S :2_30+§fl’ flzz_fRa
b

f21=—§fR, Sn= ‘|‘ fI

(19)

(20)
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Solving Eq. (22) yields

Do — ST — fi12T
Y fife = fufa (24)
Do — —fuT+ fuT-

i f11f22 _ﬁZf.ZI .

Substituting Eqgs. (12), (15), (16), (23) and (24) into Eq. (11) yields the complex potential ¢(zx)
(k=1,2,3,4), the solution of the infinite plate with a hole. Then, the “disturbed” stresses can be obtained
by using Eq. (6). Sum of the “disturbed” stress and the homogeneous stress provides the final solution of
the problem.

4. The case of uni-axial far field mechanical load

Consider the case that the constants u, A (kK =1, 2, 3) can be expressed as
Hyo =g, Mo = Mg il p3 = —pp +ipg
M=o, l=Ir+ik, A3=Ag—1i4,

where uo > 0, ur >0, u; >0, Ay, Ar, 41 are real numbers to be determined by Eq. (7). If only the far field
mechanical loading in the x,-direction ¢55 = gy (MPa) is considered, the expression of the normalized tan-
gential stress K = g¢/ay on the surface of the hole can be obtained by using the following equation:

N alltan20 + O'22t2 — 20’121”[31’1 0
N 2 + tan%0

where ¢ = b/a is the shape factor of the elliptic hole, and

(0° < 0 < 90°),

09

K =142+ (=1+7)cos 201 { o {*sin® Ot — £eos’Ou — 1y} (sin’0 + 22 cos>0pi3)
+ iy (3tsin® 0, — Peos®Opy) + 1 [Peos? 0 + eos’Opf — tsin” 0 + £cos*0uy + iy (sin®0
+ £cos?0u) + 11 (sin®0 + 2cos? 043 )] + sin®0p (13 — tan®0) + sin® 03 (22 + tan’0)
— potyy[t*cos* Ot — 27sin* 0 + t*cos? Ok + 26212 (sin®0 + £cos?0u3 ) + sin’Otan>0]}
— g {sec?00(sin*0 4 2cos?0u2) (13 + 1) (sin*0 — 2tcos>Ou, — £eos*0u? — Pcos*0p)
+ Jrpto{£Pcos’ 0t — tsin® 0 + cos’ Ot + tud (—sin0 — 2tsin® Oy + £cos> 0l
+ £2c0s’0u%) + 12(3tsin*0 4 26 cos? 0 ) — 2sin*Ouytan?0 + o [r*cos?0ut — 27sin* 0%
+ t*cos?Ouh 4 26213 (sin*0 4 Pcos?0pp )sin*Otan®0]} } } /{{2[1 + 2 + (=1 + )
x c0s 20]sec’0(sin*0 + 2cos?0pd) (g (o — 2r) + (1o — 1)) }[t*cos*Op + (sin®0
— cos?0)” + 21cos? 0 (sin®0 + Acos*0pd )]} (25)

Setting 6 = 0 in the above equation yields the expression of the stress concentration factor K, = ag|g—o/d0,
namely,

o ha A ) (g + 1) + pglo + 1(pg + 447)]

t(uk + 1) poltr (Ao — AR) + (o — py) ]

—dotto[ 201 + t(pg + ud)] + Arlug + (14 1p9) (g + 1)) (26)
(g + uf)tolur (lo — Ar) + (1o — 111) 1] .

K, =

R
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From Eq. (26), it can be readily proved that the following equation is valid:

K -1
PPV NESY @)
where K;|,— is the stress concentration factor of a circular hole (¢ = 1), and
K =i = (1 + o) (g + 1) + 15[ + (pR + 1))
oy =4
- (& + 1) tolur (20 — ) + (1o — ) 2]
o2 + (g A )] + 2w + (1 o) (g + 47)] -8
Hr . (28)

(ui + 1) olpr (o — Ar) + (1o — pr) 1]
The derived formula is applied to a transversely isotropic piezoelectric material, PZT-4, for validating its
correctness. The following data from Sosa (1991) are used:
an =8.205x 1072, 4 =—3.144 x 107",
ap =7495 x 1072 a4 =193 x 1072 (m> N 1),
by = —16.62 x 107, by =23.96 x 107, (29)
by =394 x 107 (m>C "),
e =7.66x 107, ¢p=982x10" (VAN).
Inserting these constants into Eq. (8) yields
w, = 1.2184867i,
t, = 0.20060870 + 1.06987901, (30)
U = —0.20060708 + 1.0698790:i.

The dielectric constant of air is &, = 8.854 x 10~ '2. For demonstrations, the elastic material constants for
the transversely isotropic material are set to be the same as that of the piezoelectric material. Concrete re-
sults for the stress concentration factors of the isotropic elastic material, the transversely isotropic elastic
material and the transversely isotropic piezoelectric material are listed in Table 1. Based on these data,
the following expressions can be obtained:

(1) for the isotropic material

Kt|t:l —1

2
K, =1+ :1+;;

(2) for the transversely isotropic material

K, —1 1.9567

Kt:1+ )
t

(3) for the PZT-4

K -1 1.7215
K,:1+‘|’%:1+ —

It should be pointed out that the Egs. (26) and (28) are only valid for the transversely isotropic piezo-
electric material since the eigenvalue p, (kK =1, 2, 3) is solved from the eigenequation (8), closely related to
the values of the particular material constants. Thus, it is proved that Eq. (27) is also valid for both isotro-
pic materials and transversely isotropic materials. It may be conjectured that, for any elastic or piezoelectric
materials, Eq. (27) may be valid.
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Table 1
Comparisons on the stress concentration factor of the present solutions, transversely isotropic elastic solutions and isotropic elastic
solutions

The hole shape  The isotropic The transversely isotropic The transversely isotropic piezoelectric solutions
factors t = 2—’ elastic solutions K,;  elastic solutions
K, Relative K Relative Relative
changes K"K;”K" (%) changes K"K;”K” (%)  changes K’IK;DK” (%)
0.01 201 196.6700  2.1542 173.3110  13.7756 11.8773
0.02 101 98.8350  2.1436 87.1173  13.7452 11.8558
0.03 67.6667 66.2234  2.1330 58.4026  13.6908 11.8097
0.05 41 40.1340  2.1122 354371 13.5680 11.7030
0.07 29.5714 28.9529  2.0915 25.5966  13.4414 11.5923
0.08 26 254588  2.0815 22.5216  13.3785 11.5371
0.1 21 20.5670  2.0619 18.2169  13.2529 11.4266
0.2 11 10.7835  1.9682 9.6080  12.6544 10.9007
0.3 7.6667 7.5223  1.8826 6.7386  12.1055 10.4191
0.4 6 5.8918  1.8042 5.3039  11.6017 9.9775
0.5 5 49134  1.7320 44431  11.1380 9.5718
0.6 4.3333 42612  1.6652 3.8692  10.7098 9.1977
0.7 3.8571 3.7953  1.6035 3.4594  10.3131 8.8515
0.8 3.5 3.4459  1.5463 3.1519 9.9451 8.5308
0.9 3.2222 3.1741  1.4931 29128 9.6021 8.2319
1 3 2.9567  1.4433 2.7215 9.2820 7.9535

4.1. Stress distributions

The variations of the normalized stress K = g4/0( with the angle in the vicinity of the hole and the stress
concentration factor K; = ay|g—o/cq with the shape factor of the hole ¢ = b/a are considered with emphasis
placed on the comparison of the solutions of isotropic elastic materials, transverse isotropic elastic mate-
rials and transverse isotropic piezoelectric materials. Fig. 1 shows the variation of the normalized stress
K = 6y/a, along the surface of the hole. Curves of isotropic and transversely isotropic elastic plates almost
coincide with each other, while the curve of the transversely isotropic piezoelectricity obviously deviates
from them. At the locations with the highest stress concentration (€ = 0 and =), the stress in the piezoelec-
tricity is about 8.0% and 11.4% lower than that in the elasticity for # =1 and 0.1, respectively. It is also
found that the present results are in excellent coincidence with the related results of Sosa (1991), Deng
and Wang (2002), and Dai and Guo (2004) when ¢ = 1.

A comprehensive comparison of the stress concentrations at the elliptic hole in the piezoelectric and elas-
tic plates is presented in Fig. 2 and Table 1. From Table 1, it can be found that the difference of the three
solutions increases slowly as the hole degenerating into a crack. The piezoelectric-mechanical coupling in
the PZT-4 can alleviate the stress concentration for about 8% for circular holes and up to 12% when ¢ de-
creases to 0.01. Due to the electromechanical coupling effect, however, the stress concentration factor in a
transverse isotropic piezoelectric material is obviously weaker when the materials are polarizing along the
z-axis. Therefore, the electromechanical coupling effect is helpful for the safety of materials and structures.

Then, the distribution of the normalized stress X,, = gy/ ag on the section at § = 0 is studied. Fig. 3(a)-
(c) show that, whenever the value of the hole shape factor ¢ is, the curves for the isotropic and transversely
isotropic elastic bodies are nearly coincident, while the curve of the transversely isotropic piezoelectricity is
obviously higher as the ¢) in the piezoelectricity is lower. The difference between the normalized stress
X, = 0g/0Y of the piezoelectricity and that of the elasticity reaches 7.17%, 11.37% and 11.96% at x =3
on the section for t =1, 0.1 and 0.01, respectively.



L. Dai et al. | International Journal of Solids and Structures 43 (2006) 1818—1831

4 -

1827

isotropic elastic

e transversely isotropic elastic
transversely isotropic piezoelectric

29 t=1.0
x| 0=67.795*10°
14
04
-1
T T T T 1
0.0 0.2 04 0.6 0.8 1.0
0 (m)
(@
204 isotropic elastic
18 e transversely isotropic elastic
16 transversely isotropic piezoelectric
144
12
X 10
8
6 t=0.1
4] 0=67.795*10°
24
04
-2 T T T T T T T T T 1
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Fig. 1. Variations of the normalized stress K = g4/a, with 0 along the edge of a hole in infinite sheets subjected to remote tensile

loading. (a) t=1; (b) t=0.1.

1000

100

0 =67.795*10°

isotropic elastic
e transversely isotropic elastic
transversely isotropic piezoelectric

1E-3

0.01

0.1 1

Fig. 2. Variations of the stress concentration factor K, = ag|g— o/a0 at the root of the elliptic hole with the shape factor ¢ of the hole.
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Fig. 3. Distributions of the normalized stress X,, = g/ 08 on the section at 0 = 0 for different the shape factors of the holes. (a) = 1;
(b) t=0.1; (c) t =0.01.
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Fig. 4 shows the variation of the normalized electric displacement Ky, = (Dy|o— o/ao) x 10® and the nor-
malized electric field K., = —(Ep|g=o/00) X 102 1t is interesting to see that the variation of Ky, is nearly lin-
ear to 7 in the log-log coordinates. K., is approximately linear to ¢ for smaller ¢ (say ¢ < 0.1), while becomes
nonlinear for # > 0.1 in the same coordinates. It should be noted that, an amplification factor of 8 orders is
applied to K4, while the factor to K., is only 2 powers of ten in the figure. As the coefficient factors of the
electric displacements are about 8 order higher than that of the stresses in Eq. (4), so the contribution of the
piezoelectric effect to the strain field near the hole can reach the same order as the mechanical stresses. This
is the reason why the piezoelectric effect can release the stress concentration at the hole.

4.2. The effect of the dielectric parameter o

The electric conductive condition of the medium in the hole is always an important issue in practical
applications. In this section the influence of the dielectric parameter o of the medium inside the hole on

100 4

10 4

0.01 0.1 1

Fig. 4. Variations of the concentration factors of the electric displacement Ky, = (Dg|g—o/60) X 10% and the electric field K., = (Eplo=o/
60) X 10% at the root of the elliptic hole with the shape factor ¢ of the hole.

—o— =0
—o— «=0.01
—— =01

2.76

—— =1 o
—o— =10
2.75 H

S aaaaaaanad
- TG T
. T TTTI T
2.74 o ¢TI

(K1)t
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Fig. 5. Variations of the concerned stress concentration factor K,|,—; = (K; — 1)t + 1 at the root of the elliptic hole with the shape
factor ¢ of the hole for different values of parameter-o.
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Fig. 6. Variations of the concentration factors of the stress K,q = (0|g—o/Do) X 1078, the electric displacement Kqq = Dyglg—o/ Do and the
electric field Keq = (Ep|o=o/ Do) X 10~% at the root of the elliptic hole with the shape factor ¢ of the hole.

the concerned stress concentration factor K,|,—; = (K, — 1)¢ + 1 will be analyzed in details. Fig. 5 shows the
influence of o on the stress concentration parameter K,|,—; at the root of the hole for various shape factor ¢.
It is found that the maximal difference in stress concentration factor caused by the change of o from 0 to 10
is less than 1.5% at 1 = 1. Furthermore, the variation of K,|,—; with the shape factor ¢ is within 0.82% in all
the cases and nearly disappears when o = 0. This means that the important relation (27) can hold good for
any electric boundary condition in the hole in piezoelectric materials, or the stress concentration factor K, is
in inverse proportion to the shape factor ¢ of the hole in both elastic and piezoelectric bodies.

5. The case of uni-axial far field electric displacement load

In this section, solutions under the far field electric displacement D5° = D, loading will be discussed. The
concentration factors of the stress K,q = (ag|g—o/ Do) X 1078, the electric displacement Kyq = Dylg—o/ Do and
the electric filed Keq = (Ep|o—=o/ Do) X 1078 in the vicinity of elliptic holes in the piezoelectric material are
plotted in Fig. 6. It can be seen that the curves of Kyq is nearly linear to ¢ in the log-log coordinates.
The curves of K, and K,4 are nearly coincident with each other and nearly linear to ¢ for 7 <0.1, and be-
come nonlinear for larger ¢ in the log-log coordinates. Obviously, the concentrations of stress, electric dis-
placement and electric filed are significant even under the pure far field electric displacement loading.
Therefore, the fracture problem induced by electric loading can be crucial in piezoelectric structures and
instruments.

6. Conclusions

The two-dimensional plane strain problems of both elastic and transversely isotropic piezoelectric mate-
rials containing an elliptic hole subjected to a uniform far field stress and far field electric displacement are
solved analytically using the complex variables theory. The effects of electric boundary condition and elec-
tric conduction property of the medium in the hole are discussed in details. The solution of the normalized
stress K = gg/0y is obtained explicitly on the surface of the hole and on the section along the axle of the
elliptic hole. A concise relationship between the stress concentration factor of an elliptic hole with aspect
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shape ratio ¢ and that of a circular hole with = 1 is obtained as K, = 1 + , which is prove to be valid
for both elastic materials and piezoelectric materials under any electric boundary condition. The influence
of the electromechanical coupling effect and the dielectric parameter of the air inside the hole on the stress
distribution and on the concerned stress concentration factor has been studied in details. It is shown that
the electromechanical coupling effect is helpful to reduce the stress concentration at holes. The influence of
elastic transversely isotropic property on the stress concentration factor in elastic materials is very weak.
However, obvious difference of stress oy between the piezoelectric material and the two elastic materials
is observed. Results also show that the influence of the dielectric parameter of the air inside the hole on
the stress distributions on the section at § = 0 and on the concerned stress concentration factor on the sur-
face of the hole is within 1.5% in a wide range of the dielectric parameter. Distributions of the mechanical
and electrical components at the rim of the hole or along the x-axis are obtained for the elliptic holes. It is
also shown that significant stress, electric displacement and electric field concentrations can be caused by
uniform far field electric displacement loading. The present results are verified by comparing with available
existing data.
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