
International Journal of Solids and Structures 43 (2006) 1818–1831

www.elsevier.com/locate/ijsolstr
Stress concentration at an elliptic hole in transversely
isotropic piezoelectric solids

Longchao Dai, Wanlin Guo *, X. Wang

Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received 6 December 2004; received in revised form 26 May 2005
Available online 20 July 2005
Abstract

Two-dimensional electroelastic analyses have been performed theoretically on a transversely isotropic piezoelectric
material containing an elliptic hole, subjected to a uniform stress field and a uniform electric displacement field at infin-
ity while the surface of the hole is free of traction and electrically open. Solutions are obtained by using the exact electric
boundary condition based on the complex variation method. Explicit solutions for the distributions of the mechanical
and electrical components on the rim of the elliptic hole are obtained. An interesting relationship between the stress
concentration factor of an elliptic hole (Kt) and that of a circular hole (Ktjt=1), Kt ¼ 1þ Kt jt¼1�1

t , is found in both elastic
and piezoelectric materials. It is shown that the electromechanical coupling effect is helpful to reduce the stress concen-
tration. And the influence of the dielectric parameter of the medium inside the hole on the stresses and the concerned
stress concentration factor at the surface of the hole is weak in a wide range of the dielectric parameter. Comparisons
with available results show good coincidence.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the potential applications of piezoelectric materials have drawn a lot of attentions in
many fields for their electromechanic-coupling effect. The main disadvantage, however, is their brittleness.
Piezoelectric materials have a tendency to develop critical crack growth due to stress concentrations in-
duced by both mechanical and electrical loads. Yet, defects are not limited to cracks. Voids, inclusions, del-
aminations and porosities may also exist and contribute to failures of the materials.
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Due to the simplicity and importance, crack problems have received considerable interests for more than
two decades. In 1980, Deeg analyzed dislocation, crack and inclusion problems in piezoelectric solids. To
simplify the mathematical evaluation, Deeg proposed that the normal components of the electric displace-
ment could be treated as zero at the upper and lower crack surfaces. In order to prove the validity of Deeg�s
approximation, Pak (1990) gave a detailed argument for neglecting the electric displacement within the
crack. Sosa and Pak (1990) investigated a more general crack tip field using an eigenfunction analysis.
Pak (1992); Sosa (1992) and Suo et al. (1992) analyzed the stress and electric fields near a crack. Researches
on crack problems in piezoelectricity have also been conducted by Hao and Shen (1994), Zhang and Tong
(1996), and Wang and Shen (2002).

The problem of a piezoelectric material containing an elliptic hole or inclusion is another important issue
for its importance in both theory and applications. Sosa (1991) solved the plane strain problem for a trans-
versely isotropic piezoelectric material containing an elliptic hole with impermeable electric boundary con-
dition by using the theory of complex variables. Later, Sosa and Khutoryansky (1996) used the series
expansion method to address the same problem but with permeable electric boundary conditions. Their re-
sults showed that the electric displacement inside the hole is constant when uniform mechanical and electric
loads are applied at infinity. Gao and Fan (1999) gave an explicit, closed-form solution satisfying the exact
electric boundary condition on the hole surface for the same problem. They also analyzed the stress inten-
sity factors when the elliptic hole degenerated into a crack. Ting and Yan (1991) and Chung and Ting
(1996) analyzed the plane problem for an anisotropic piezoelectric plate with either an elliptic hole or an
elliptic rigid inclusion by using the Stroh formalism. Analysis on an elliptical cylinder cavity or a crack in-
side an infinite piezoelectric medium was performed by Zhang et al. (1998) based on the Stroh formalism
and the finite element method. Recently, Deng and Wang (2002); Dai and Guo (2004); Zhou and Wang
(2004) and Wang et al. (2004) found that some numerical data given by Sosa (1991) were wrong although
the theoretical solutions themselves were correct.

To the best knowledge of the authors, however, there are few works that make clear the stress concen-
tration at an elliptic hole. Based on the works of Sosa (1991), Sosa and Khutoryansky (1996), and Gao and
Fan (1999), the stress concentration in a two-dimensional transversely isotropic piezoelectric plate contain-
ing an elliptic hole is completely studied in this paper. Furthermore, distributions of the mechanical and
electrical components on the rim of the hole or along the x-axis are given for two different load conditions.
For the case of the far field uni-axial mechanical loading, the solution of the normalized tangential stress is
obtained. An interesting relationship between the stress concentration factor of a semi-elliptic hole and that
of a circular hole is obtained. Using this expression, the influence of the dielectric parameter of the medium
inside the hole on stress distributions and on stress concentrations is readily observed. It is found that this
influence is very weak in a wide range of the dielectric parameter, but the electromechanical coupling effect
is helpful to reduce the stress concentration. Some curves are given under either the far field mechanical
loads or far field electric displacement loads, respectively.

2. Basic formulations of the problem

In a Cartesian coordinate system (x1,x2,x3), the general equations governing the three-dimensional pie-
zoelectricity in the absence of body forces and free charges can be written as
eij ¼ sijklrkl þ gkijDk; Ei ¼ �giklrkl þ bikDk; ð1Þ
rij;j ¼ 0; Di;i ¼ 0; ð2Þ
eij ¼ 1

2
ðuj;i þ ui;jÞ; Ei ¼ �/;i; ð3Þ
where i, j, k, l = 1, 2, 3; rij, eij, ui, Di, Ei are the components of stress, strain, displacement, electric displace-
ment and electric field, respectively; sijkl is the compliance tensor of the material measured at zero electric
displacement; gkij is the piezoelectric tensor, and bik is the dielectric impermeability tensor measured at zero
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stress, / is the electric potential. A comma before a subscript stands for differentiation and repeated indices
imply summation.

Here the Cartesian coordinates x, y, z are the principal axes of the material while the z-axis is oriented in
the poling direction of the piezoelectric ceramic and the x–y plane is isotropic. We consider a transversely
isotropic piezoelectric plate containing an elliptic hole with semi-axes of a and b under far field loadings.
For simplicity, the following expressions are adopted:
Displacement: ux ¼ uðx; zÞ; uy ¼ vðx; zÞ; uz ¼ wðx; zÞ;
Electric potential: / ¼ /ðx; zÞ.
Following Sosa (1991), replace x, z, y with x1, x2, x3 . One has
e11
e22
2e23
2e12
2e13

0
BBBBBB@

1
CCCCCCA

¼

a11 a12 0 0 0

a12 a22 0 0 0

0 0 a33 0 0

0 0 0 a44 0

0 0 0 0 a55

0
BBBBBB@

1
CCCCCCA

r11

r22

r23

r12

r13

0
BBBBBB@

1
CCCCCCA

þ

0 b12
0 b22
0 0

b41 0

0 0

0
BBBBBB@

1
CCCCCCA

D1

D2

� �
; ð4Þ

E1

E2

� �
¼ �

0 0 0 b41 0

b12 b22 0 0 0

� �
r11

r22

r23

r12

r13

0
BBBBBB@

1
CCCCCCA

þ
c11 0

0 c22

� �
D1

D2

� �
; ð5Þ
where
a11 ¼ s11 �
s212
s11

; a12 ¼ s13 �
s12s13
s11

; a22 ¼ s33 �
s213
s11

; a33 ¼ s44 þ
g215
b11

;

a44 ¼ s44; a55 ¼ 2ðs11 � s12Þ; b12 ¼ g31 �
s12g31
s11

;

b22 ¼ g33 �
s13g31
s11

; b41 ¼ g15; c11 ¼ b11; c22 ¼ b33 þ
g231
s11

.

Let zk = x1 + lkx2. Thus, expressions of all physical quantities in the x1–x2 plane can be expressed as
follows:
hr11; r22; r12i ¼ 2Re
X3
k¼1

hl2
k ; 1;�lkiu0

kðzkÞ;

hr13; r23i ¼ 2Reh�l4; 1iu0
4ðz4Þ;

hD1;D2i ¼ 2Re
X3
k¼1

h�kklk; kkiu0
kðzkÞ;

hE1;E2i ¼ �2Re
X3
k¼1

hdk; dklkiu0
kðzkÞ;

/ ¼ 2Re
X3
k¼1

dkukðzkÞ;

hu;wi ¼ 2Re
X3
k¼1

hpk; qkiukðzkÞ;

v ¼ �2Re a55l4u4ðz4Þ;

ð6Þ
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where
pk ¼ a11l2
k þ a12 þ b12kk; qk ¼ a12lk þ

a22 þ b22kk
lk

; kk ¼
ðb12 þ b41Þl2

k þ b22
c11l2

k þ c22
;

l4 ¼ i

ffiffiffiffiffiffi
a33
a55

r
; dk ¼ ðc11kk � b41Þlk; ð7Þ
in which, lk (k = 1, 2, 3) can be determined by solving the following equation:
ða22 þ ð2a12 þ a44Þl2 þ a11l4Þðc11l2 þ c22Þ þ ððb12 þ b41Þl2 þ b22Þ2 ¼ 0. ð8Þ

There are three pairs of conjugated plural roots for Eq. (8). And the three roots, whose imaginary parts are
positive, are denoted by lk (k = 1, 2, 3).

At the hole boundary, one has
dU
dx1

¼ �
Z
l
t2s ds ¼ �

Z
l
r12 dx2 � r22 dx1;

dU
dx2

¼
Z
l
t1s ds ¼

Z
l
r11 dx2 � r12 dx1;

u4 ¼
Z
l
r23 dx1 � r13 dx2;Z

l
Dn ds ¼

Z
l
D1 dx2 � D2 dx1;

ð9Þ
where U is the Airy stress function, and t1s and t2s are the two components of the force on the boundary.
3. Solutions of the problem

Consider the problem of a piezoelectric solid containing an elliptic hole subjected to a uniform stress
field r1 and a uniform electric displacement field D1 at infinity while the surface of the hole is free of trac-
tion and electrically open. The solution may be separated into two parts: one part is the homogeneous solu-
tion in which the stress and electric displacement are r1 and D1 everywhere; and the other is the
‘‘disturbed’’ state due to the presence of the hole. The second part of the solution should satisfy the bound-
ary conditions of vanishing of both stress and electric displacement at infinity. On the surface of the hole,
the stress vanishes after the two parts are superposed. For simplicity, we use the superscript ‘‘I’’ to denote
the first part solution, ‘‘II’’ the second part solution, ‘‘1’’ the quantities at far fields, and ‘‘0’’ the quantities
at the surfaces of the hole.

3.1. The stress field for the plate without a hole

Consider an infinite piezoelectric plate subjected to a uniform stress field r1 and a uniform electric dis-
placement field D1 at infinity, the solutions are
rI
11 ¼ r1

11; rI
12 ¼ r1

12; rI
13 ¼ r1

13; rI
22 ¼ r1

22; rI
23 ¼ r1

23; DI
1 ¼ D1

1 ; DI
2 ¼ D1

2 . ð10Þ
3.2. The stress field for the plate with an elliptic hole

Since the complex potential uk(zk) is a holomorphic function, it can be expressed as follows (Sosa, 1991;
Gao and Fan, 1999):
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Uk½zkð1kÞ� ¼ ukðzkÞ ¼ ak11
�n
k ðk ¼ 1; 2; 3; 4Þ; ð11Þ
where
1k ¼
zk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2k � ða2 þ l2

kb
2Þ

q
a� ilkb

ðk ¼ 1; 2; 3; 4Þ. ð12Þ
Because the surface of the hole is free, the following boundary conditions should be met with considering
of the relations (9):
2Re
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k¼1

UII
k ðrÞ þ �
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� �
¼ 0;
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2 dx1

� �
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2Re UII
4 ðrÞ þ �

Z
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13 dx2 � rI

23 dx1

� �
¼ 0.

ð13Þ
Here,
r ¼ eih; x1 ¼ a
rþ r
2

; x2 ¼ ib
�r� r
2

. ð14Þ
Substituting Eqs. (10) and (11) into Eq. (13) leads to
akn ¼ 0; ðk ¼ 1; 2; 3; n P 2Þ;

ak1 ¼
X3
j¼1

MkjQj; ðk ¼ 1; 2; 3Þ;

a41 ¼ � ar1
23 � ibr1

13

2
;

ð15Þ
in which
M�1 ¼
1 1 1

l1 l2 l3

k1 k2 k3

0
B@

1
CA;

Q ¼ ðQjÞ ¼

� ar1
22 � ibr1

12

2
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12 � ibr1
11

2

� aðD1
2 � D0

2Þ � ibðD1
1 � D0

1Þ
2

0
BBBBBB@

1
CCCCCCA
. ð16Þ
The air inside the hole is considered as a homogeneous isotropic linearity medium without polarization
and free of electric charge. One has $ Æ E = 0. Note that E = �$/. Thus, $ 2/ = 0, where
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r ¼ o

ox1
~iþ o

ox2
~jþ o

ox3
~k; r2 ¼ o2

ox21
þ o2

ox22
þ o2

ox23
.
For plane problems, the following expression is adopted (Sosa, 1991):
/0ðx1; x2Þ ¼ �e1x1 � e2x2; ð17Þ

where e1 and e2 are real constants and
E0
1 ¼ � o/0

ox1
¼ e1; E0

2 ¼ � o/0

ox2
¼ e2; D0

1 ¼ e0E0
1; D0

2 ¼ e0E0
2. ð18Þ
Here, E0
1; E0

2; D0
1; D0

2 are the electric intensity and electric displacement inside the hole, respectively, and e0
is the dielectric constant of the air inside the hole.

There are two constants, e1, e2, to be determined in this problem. On the hole surfaces, the electric po-
tential in the media is equal to that inside the hole, namely,
/I þ /II ¼ /0. ð19Þ

Substituting Eqs. (6), (10), (11), (14)–(18) into Eq. (19) and simplifying yield
r�hþ h�r ¼ 0; ð20Þ

where
h ¼
X3
k¼1

½dkak1� þ
aðE0

1 � E1
1 Þ þ ibðE0

2 � E1
2 Þ

2

¼ aðE0
1 � E1
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2 � E1

2 Þ
2

þ
X3
k¼1

X2
i¼1

dkMkiQi �
aðD1

2 � D0
2Þ � ibðD1

1 � D0
1Þ

2

X3
k¼1

dkMk3.
Analyzing the characteristic of Eq. (20) yields hk = 0 (Gao and Fan, 1999). Thus,
Reh ¼ 0; Imh ¼ 0. ð21Þ

After considering Eqs. (5) and (18), Eq. (21) can be rewritten in a compact form:
f11 f12
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1
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 !
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� �
; ð22Þ
where
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ð23Þ
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Solving Eq. (22) yields
D0
1 ¼

f22T 1 � f12T 2

f11f22 � f12f21
;

D0
2 ¼

�f21T 1 þ f11T 2

f11f22 � f12f21
.

ð24Þ
Substituting Eqs. (12), (15), (16), (23) and (24) into Eq. (11) yields the complex potential uk(zk)
(k = 1, 2, 3, 4), the solution of the infinite plate with a hole. Then, the ‘‘disturbed’’ stresses can be obtained
by using Eq. (6). Sum of the ‘‘disturbed’’ stress and the homogeneous stress provides the final solution of
the problem.
4. The case of uni-axial far field mechanical load

Consider the case that the constants lk, kk (k = 1, 2, 3) can be expressed as
l1 ¼ il0; l2 ¼ lR þ ilI; l3 ¼ �lR þ ilI;

k1 ¼ k0; k2 ¼ kR þ ikI; k3 ¼ kR � ikI;
where l0 > 0, lR > 0, lI > 0, k0, kR, kI are real numbers to be determined by Eq. (7). If only the far field
mechanical loading in the x2-direction r1

22 ¼ r0 (MPa) is considered, the expression of the normalized tan-
gential stress K = rh/r0 on the surface of the hole can be obtained by using the following equation:
rh ¼
r11tan

2hþ r22t2 � 2r12t tan h
t2 þ tan2h

ð00 6 h < 90�Þ;
where t = b/a is the shape factor of the elliptic hole, and
K ¼ ½1þ t2 þ ð�1þ t2Þ cos 2h�2fkIl0ft2sin2hl4
I � t3cos2hl5

I � tl3
I ðsin

2hþ 2t2cos2hl2
RÞ

þ lIð3tsin2hl2
R � t3cos2hl4

RÞ þ tl2
0½t2cos2hl3

I þ t3cos2hl4
I � tsin2hl2

R þ t3cos2hl4
R þ lIðsin2h

þ t2cos2hl2
RÞ þ tl2

I ðsin
2hþ 2t2cos2hl2

RÞ� þ sin2hl2
Rðt2l2

R � tan2hÞ þ sin2hl2
I ð2t2l2

R þ tan2hÞ
� l0lI½t4cos2hl4

I � 2t2sin2hl2
R þ t4cos2hl4

R þ 2t2l2
I ðsin

2hþ t2cos2hl2
RÞ þ sin2htan2h�g

� lRfsec2hk0ðsin2hþ t2cos2hl2
0Þðl2

R þ l2
I Þðsin

2h� 2tcos2hlI � t2cos2hl2
I � t2cos2hl2

RÞ
þ kRl0ft3cos2hl4

I � tsin2hl2
R þ t3cos2hl4

R þ tl2
0ð�sin2h� 2tsin2hlI þ t2cos2hl2

I

þ t2cos2hl2
RÞ þ l2

I ð3tsin
2hþ 2t3cos2hl2

RÞ � 2sin2hlItan
2hþ l0½t4cos2hl4

I � 2t2sin2hl2
R

þ t4cos2hl4
R þ 2t2l2

I ðsin
2hþ t2cos2hl2

RÞsin
2htan2h�ggg=ff2½1þ t2 þ ð�1þ t2Þ

� cos 2h�sec2hðsin2hþ t2cos2hl2
0Þ½lRðk0 � kRÞ þ ðl0 � lIÞkI�g½t4cos4hl4

I þ ðsin2h

� t2cos2hl2
RÞ

2 þ 2t2cos2hl2
I ðsin

2hþ t2cos2hl2
RÞ�g. ð25Þ
Setting h = 0 in the above equation yields the expression of the stress concentration factor Kt = rhjh=0/r0,
namely,
Kt ¼ kI
�lIð1þ tl0Þðl2

R þ l2
I Þ þ l2

0½lI þ tðl2
R þ l2

I Þ�
tðl2

R þ l2
I Þl0½lRðk0 � kRÞ þ ðl0 � lIÞkI�

� lR

�k0l0½2lI þ tðl2
R þ l2

I Þ� þ kR½l2
0 þ ð1þ tl0Þðl2

R þ l2
I Þ�

tðl2
R þ l2

I Þl0½lRðk0 � kRÞ þ ðl0 � lIÞkI�
. ð26Þ
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From Eq. (26), it can be readily proved that the following equation is valid:
Kt ¼ 1þ Ktjt¼1 � 1

t
; ð27Þ
where Ktjt=1 is the stress concentration factor of a circular hole (t = 1), and
Ktjt¼1 ¼ kI
�lIð1þ l0Þðl2

R þ l2
I Þ þ l2

0½lI þ ðl2
R þ l2

I Þ�
ðl2

R þ l2
I Þl0½lRðk0 � kRÞ þ ðl0 � lIÞkI�

� lR

�k0l0½2lI þ ðl2
R þ l2

I Þ� þ kR½l2
0 þ ð1þ l0Þðl2

R þ l2
I Þ�

ðl2
R þ l2

I Þl0½lRðk0 � kRÞ þ ðl0 � lIÞkI�
. ð28Þ
The derived formula is applied to a transversely isotropic piezoelectric material, PZT-4, for validating its
correctness. The following data from Sosa (1991) are used:
a11 ¼ 8.205� 10�12; a12 ¼ �3.144� 10�12;

a22 ¼ 7.495� 10�12; a44 ¼ 19.3� 10�12 ðm2 N�1Þ;

b12 ¼ �16.62� 10�3; b22 ¼ 23.96� 10�3;

b41 ¼ 39.4� 10�3 ðm2 C�1Þ;

c11 ¼ 7.66� 107; c22 ¼ 9.82� 107 ðV2 N�1Þ.

ð29Þ
Inserting these constants into Eq. (8) yields
l1 ¼ 1.2184867i;

l2 ¼ 0.20060870þ 1.0698790i;

l3 ¼ �0.20060708þ 1.0698790i.

ð30Þ
The dielectric constant of air is e0 = 8.854 · 10�12. For demonstrations, the elastic material constants for
the transversely isotropic material are set to be the same as that of the piezoelectric material. Concrete re-
sults for the stress concentration factors of the isotropic elastic material, the transversely isotropic elastic
material and the transversely isotropic piezoelectric material are listed in Table 1. Based on these data,
the following expressions can be obtained:

(1) for the isotropic material
Kt ¼ 1þ Ktjt¼1 � 1

t
¼ 1þ 2

t
;

(2) for the transversely isotropic material
Kt ¼ 1þ Ktjt¼1 � 1

t
¼ 1þ 1.9567

t
;

(3) for the PZT-4
Kt ¼ 1þ Ktjt¼1 � 1

t
¼ 1þ 1.7215

t
.

It should be pointed out that the Eqs. (26) and (28) are only valid for the transversely isotropic piezo-
electric material since the eigenvalue lk (k = 1, 2, 3) is solved from the eigenequation (8), closely related to
the values of the particular material constants. Thus, it is proved that Eq. (27) is also valid for both isotro-
pic materials and transversely isotropic materials. It may be conjectured that, for any elastic or piezoelectric
materials, Eq. (27) may be valid.



Table 1
Comparisons on the stress concentration factor of the present solutions, transversely isotropic elastic solutions and isotropic elastic
solutions

The hole shape
factors t ¼ b

a

The isotropic
elastic solutions Kt1

The transversely isotropic
elastic solutions

The transversely isotropic piezoelectric solutions

Kt2 Relative
changes Kt1�Kt2

Kt1
(%)

Kt3 Relative
changes Kt1�Kt3

Kt1
(%)

Relative
changes Kt2�Kt3

Kt2
(%)

0.01 201 196.6700 2.1542 173.3110 13.7756 11.8773
0.02 101 98.8350 2.1436 87.1173 13.7452 11.8558
0.03 67.6667 66.2234 2.1330 58.4026 13.6908 11.8097
0.05 41 40.1340 2.1122 35.4371 13.5680 11.7030
0.07 29.5714 28.9529 2.0915 25.5966 13.4414 11.5923
0.08 26 25.4588 2.0815 22.5216 13.3785 11.5371
0.1 21 20.5670 2.0619 18.2169 13.2529 11.4266
0.2 11 10.7835 1.9682 9.6080 12.6544 10.9007
0.3 7.6667 7.5223 1.8826 6.7386 12.1055 10.4191
0.4 6 5.8918 1.8042 5.3039 11.6017 9.9775
0.5 5 4.9134 1.7320 4.4431 11.1380 9.5718
0.6 4.3333 4.2612 1.6652 3.8692 10.7098 9.1977
0.7 3.8571 3.7953 1.6035 3.4594 10.3131 8.8515
0.8 3.5 3.4459 1.5463 3.1519 9.9451 8.5308
0.9 3.2222 3.1741 1.4931 2.9128 9.6021 8.2319
1 3 2.9567 1.4433 2.7215 9.2820 7.9535
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4.1. Stress distributions

The variations of the normalized stress K = rh/r0 with the angle in the vicinity of the hole and the stress
concentration factor Kt = rhjh=0/r0 with the shape factor of the hole t = b/a are considered with emphasis
placed on the comparison of the solutions of isotropic elastic materials, transverse isotropic elastic mate-
rials and transverse isotropic piezoelectric materials. Fig. 1 shows the variation of the normalized stress
K = rh/r0 along the surface of the hole. Curves of isotropic and transversely isotropic elastic plates almost
coincide with each other, while the curve of the transversely isotropic piezoelectricity obviously deviates
from them. At the locations with the highest stress concentration (h = 0 and p), the stress in the piezoelec-
tricity is about 8.0% and 11.4% lower than that in the elasticity for t = 1 and 0.1, respectively. It is also
found that the present results are in excellent coincidence with the related results of Sosa (1991), Deng
and Wang (2002), and Dai and Guo (2004) when t = 1.

A comprehensive comparison of the stress concentrations at the elliptic hole in the piezoelectric and elas-
tic plates is presented in Fig. 2 and Table 1. From Table 1, it can be found that the difference of the three
solutions increases slowly as the hole degenerating into a crack. The piezoelectric-mechanical coupling in
the PZT-4 can alleviate the stress concentration for about 8% for circular holes and up to 12% when t de-
creases to 0.01. Due to the electromechanical coupling effect, however, the stress concentration factor in a
transverse isotropic piezoelectric material is obviously weaker when the materials are polarizing along the
z-axis. Therefore, the electromechanical coupling effect is helpful for the safety of materials and structures.

Then, the distribution of the normalized stress X tr ¼ rh=r0
h on the section at h = 0 is studied. Fig. 3(a)–

(c) show that, whenever the value of the hole shape factor t is, the curves for the isotropic and transversely
isotropic elastic bodies are nearly coincident, while the curve of the transversely isotropic piezoelectricity is
obviously higher as the r0

h in the piezoelectricity is lower. The difference between the normalized stress
X tr ¼ rh=r0

h of the piezoelectricity and that of the elasticity reaches 7.17%, 11.37% and 11.96% at x = 3
on the section for t = 1, 0.1 and 0.01, respectively.



0.0 0.2 0.4 0.6 0.8 1.0

-1

0

1

2

3

4

t=1.0
α=67.795*10-5

isotropic elastic
transversely isotropic elastic
transversely isotropic piezoelectric

θ (π)

K

(a) 

-2

0

2

4

6

8

10

12

14

16

18

20

t=0.1
α=67.795*10-5

θ ( )

isotropic elastic
transversely isotropic elastic
transversely isotropic piezoelectric

K

(b) 
π

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 4 shows the variation of the normalized electric displacement Kdr = (Dhjh= 0/r0) · 108 and the nor-
malized electric field Ker = �(Ehjh=0/r0) · 102. It is interesting to see that the variation of Kdr is nearly lin-
ear to t in the log–log coordinates. Ker is approximately linear to t for smaller t (say t < 0.1), while becomes
nonlinear for t > 0.1 in the same coordinates. It should be noted that, an amplification factor of 8 orders is
applied to Kdr while the factor to Ker is only 2 powers of ten in the figure. As the coefficient factors of the
electric displacements are about 8 order higher than that of the stresses in Eq. (4), so the contribution of the
piezoelectric effect to the strain field near the hole can reach the same order as the mechanical stresses. This
is the reason why the piezoelectric effect can release the stress concentration at the hole.

4.2. The effect of the dielectric parameter a

The electric conductive condition of the medium in the hole is always an important issue in practical
applications. In this section the influence of the dielectric parameter a of the medium inside the hole on
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Fig. 4. Variations of the concentration factors of the electric displacement Kdr = (Dhjh=0/r0) · 108 and the electric field Ker = (Ehjh=0/
r0) · 102 at the root of the elliptic hole with the shape factor t of the hole.
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Fig. 5. Variations of the concerned stress concentration factor Ktjt=1 = (Kt � 1)t + 1 at the root of the elliptic hole with the shape
factor t of the hole for different values of parameter-a.
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the concerned stress concentration factor Ktjt=1 = (Kt � 1)t + 1 will be analyzed in details. Fig. 5 shows the
influence of a on the stress concentration parameter Ktjt=1 at the root of the hole for various shape factor t.
It is found that the maximal difference in stress concentration factor caused by the change of a from 0 to 10
is less than 1.5% at t = 1. Furthermore, the variation of Ktjt=1 with the shape factor t is within 0.82% in all
the cases and nearly disappears when a = 0. This means that the important relation (27) can hold good for
any electric boundary condition in the hole in piezoelectric materials, or the stress concentration factor Kt is
in inverse proportion to the shape factor t of the hole in both elastic and piezoelectric bodies.
5. The case of uni-axial far field electric displacement load

In this section, solutions under the far field electric displacement D1
2 ¼ D0 loading will be discussed. The

concentration factors of the stress Ktd = (rhjh=0/D0) · 10�8, the electric displacement Kdd = Dhjh=0/D0 and
the electric filed Ked = (Ehjh=0/D0) · 10�8 in the vicinity of elliptic holes in the piezoelectric material are
plotted in Fig. 6. It can be seen that the curves of Kdd is nearly linear to t in the log–log coordinates.
The curves of Ker and Ktd are nearly coincident with each other and nearly linear to t for t < 0.1, and be-
come nonlinear for larger t in the log–log coordinates. Obviously, the concentrations of stress, electric dis-
placement and electric filed are significant even under the pure far field electric displacement loading.
Therefore, the fracture problem induced by electric loading can be crucial in piezoelectric structures and
instruments.
6. Conclusions

The two-dimensional plane strain problems of both elastic and transversely isotropic piezoelectric mate-
rials containing an elliptic hole subjected to a uniform far field stress and far field electric displacement are
solved analytically using the complex variables theory. The effects of electric boundary condition and elec-
tric conduction property of the medium in the hole are discussed in details. The solution of the normalized
stress K = rh/r0 is obtained explicitly on the surface of the hole and on the section along the axle of the
elliptic hole. A concise relationship between the stress concentration factor of an elliptic hole with aspect
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shape ratio t and that of a circular hole with t = 1 is obtained as Kt ¼ 1þ Kt jt¼1�1

t , which is prove to be valid
for both elastic materials and piezoelectric materials under any electric boundary condition. The influence
of the electromechanical coupling effect and the dielectric parameter of the air inside the hole on the stress
distribution and on the concerned stress concentration factor has been studied in details. It is shown that
the electromechanical coupling effect is helpful to reduce the stress concentration at holes. The influence of
elastic transversely isotropic property on the stress concentration factor in elastic materials is very weak.
However, obvious difference of stress rh between the piezoelectric material and the two elastic materials
is observed. Results also show that the influence of the dielectric parameter of the air inside the hole on
the stress distributions on the section at h = 0 and on the concerned stress concentration factor on the sur-
face of the hole is within 1.5% in a wide range of the dielectric parameter. Distributions of the mechanical
and electrical components at the rim of the hole or along the x-axis are obtained for the elliptic holes. It is
also shown that significant stress, electric displacement and electric field concentrations can be caused by
uniform far field electric displacement loading. The present results are verified by comparing with available
existing data.
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